I. Generalizations of the Capelli and Turnbull identities

نویسندگان

  • Sergio Caracciolo
  • Alan D. Sokal
چکیده

We prove, by simple manipulation of commutators, two noncommutative generalizations of the Cauchy–Binet formula for the determinant of a product. As special cases we obtain elementary proofs of the Capelli identity from classical invariant theory and of Turnbull’s Capelli-type identities for symmetric and antisymmetric matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noncommutative determinants, Cauchy-Binet formulae, and Capelli-type identities I. Generalizations of the Capelli and Turnbull identities

We prove, by simple manipulation of commutators, two noncommutative generalizations of the Cauchy–Binet formula for the determinant of a product. As special cases we obtain elementary proofs of the Capelli identity from classical invariant theory and of Turnbull’s Capelli-type identities for symmetric and antisymmetric matrices.

متن کامل

A Remark on the Higher Capelli Identities

A simple proof of the higher Capelli identities is given. Mathematics Subject Classifications (1991). 17B10, 17B35.

متن کامل

Factorial Supersymmetric Schur Functions and Super Capelli Identities

AND SUPER CAPELLI IDENTITIES Alexander Molev Centre for Mathematics and its Applications, Australian National University, Canberra, ACT 0200, Australia (e-mail: [email protected]) Abstract A factorial analogue of the supersymmetric Schur functions is introduced. It is shown that factorial versions of the Jacobi{Trudi and Sergeev{Pragacz formulae hold. The results are applied to construct a ...

متن کامل

Capelli Identities for Classical Lie Algebras

We extend the Capelli identity from the Lie algebra glN to the other classical Lie algebras soN and spN . We employ the theory of reductive dual pairs due to Howe.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008